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ABSTRACT: One of the most significant public health concerns, breast cancer, is regarded as the primary cause 
of cancer-related deaths in women globally. The clinical benefit of a computer-aided diagnostic system that may 
reduce uncertainty is significant. Therefore, the method used in this paper is transfer learning for getting good 
results on downstream tasks, even with little data, to make the diagnostic procedures more successful. The 
popularity of vision transformers has also expanded the alternatives for picture models that were previously 
accessible. Using cutting-edge vision transformer models CaiT, ViT, and BeiT, the use of transfer learning in the 
context of breast histopathology in this research is investigated. The methods for making model behavior and 
prediction are accessible to humans, so a pathologist may use them to help make a diagnosis. Through the three 
sections in the results, the experiments show how latent representations and attention mappings may be utilized to 
analyze model behavior. 
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1. INTRODUCTION 
One of the most critical global public health challenges is cancer. The Global Burden of Disease (GBD) research 
estimates that there were 9.6 million cancer deaths and 24.5 million new cancer cases globally in 2017 
[Fitzmaurice, C., 2019]. According to these figures, the global cancer incidence increased by 33% between 2007 
and 2017 [Fitzmaurice, C., 2019]. Therefore, early detection of this condition is essential to stop its development 
and lower morbidity rates among women. 
 
Traditional pathology diagnoses have great regard among doctors. The pathologist examines tissue slices under a 
microscope and determines the appropriate cancer diagnosis by examining the slices' tissue composition and 
cytopathic features. The integrity of the final pathological slice picture may be impacted by the staining density 
and flatness of the slice, as well as the collecting and storage of pathological slice images. The breast histological 
pictures' intrinsic complexity and variety make pathologists' diagnostic tasks arduous and time-consuming. [Veta, 
M., 2014] 
 
These effects have been diminished by the advent of digital pathology, which is beneficial for getting high-
resolution photographs [Niazi, M.K.K., 2019]. Digital pathology, as opposed to conventional pathology, employs 
digital pathology systems to network, process, and digitize pathological materials. Data collecting visualization, 
long-term archiving, and simultaneous browsing may be employed thanks to the use of big data technologies in 
the medical industry. Time and place no longer limit how problematic materials are processed after collection. As 
a result, digital pathology is now extensively employed in pathology-related domains [Yaffe, M.J., 2019]. 
 
Various elements, including medical knowledge and tools, influence diagnostic accuracy (IDC). Pathologists 
concentrate on areas of a sample containing IDC to give a whole mount sample an aggressive grade. Convolutional 
neural networks (CNNs) have been used in earlier publications [Avishek Choudhury. 2021, Angel Cruz-Roa., 
2014, Fei Gao., 2018, Carol E DeSantis., 2017] for data-driven tumorous area detection to speed up this laborious 
procedure. But more recently, it has been shown that vision transformers perform better on picture categorization 
tasks than CNNs. Simultaneously, explainability in artificial intelligence is a current study topic. The rise of 
intricate, large-scale models emphasizes the need for approaches to demystify the mysterious neural network. 
 
 
Radiology pictures, such as those from mammography, ultrasound imaging, and magnetic resonance imaging 
(MRI), are first used for clinical screening [Dromain, C., 2013, Wang, L., 2017]. Nevertheless, it's possible that 
these non-invasive imaging techniques can't accurately identify the malignant regions. In order to do this, a more 
thorough analysis of the malignancy in breast cancer tissues is often performed using the transfer learning 
procedure. As part of the transfer learning procedure, tissue samples are collected, mounted on microscopic glass 
slides, and stained to make the nuclei and cytoplasm more visible [Veta, M., 2014]. The ultimate diagnosis of 
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breast cancer is subsequently made by pathologists after microscopic examination of these slides [Veta, M., 2014]. 
Figure 1 shows the complete transfer learning procedure process. The 1,000 categories of natural picture categories 
in the ImageNet dataset were used to train the classification algorithm CNN-1. CNN-3 is the classification model 
of tumor molecular subtypes, and CNN-2 is the benign and malignant tumor diagnostic model generated by model 
transfer and retraining based on the CNN-1 model, respectively. Convolution neural network, or CNN. 
 
In this study, transfer learning is used to apply vision transformers to a dataset of breast histology. The attention 
maps of the models were examined, which are taken straight from the network's self-attention layers, to understand 
better how they behave. Vision transformers are demonstrated, which can provide precise predictions, and 
displaying their attention map and latent representations may provide a further understanding of model behavior. 
 

 
 

2. RELATED WORK 
Numerous research used handmade features-based algorithms to categorize histopathology pictures linked to 
breast cancer before the development of machine learning in biomedical engineering.  
 
Additionally, showing interest in the segmentation of nuclei, Filipczuk et al., 2013 retrieved 25 shape- and texture-
based characteristics from the segmented nuclei of 737 breast cancer cytology pictures. Four distinct machine 
learning classifiers, KNN (K-nearest neighbor), NB (Naive Bayes), DT (decision tree), and SVM (support vector 
machine), were developed to classify these cytological pictures into benign and malignant instances based on these 
attributes. 
 
Using the BreakHis dataset [Spanhol, F.A., 2021], Bayramoglu et al., 2016 used CNN to categorize the 
histopathology pictures of breast cancer regardless of their resolution. The scientists specifically suggested single-
task and multi-task CNN architectures, the latter of which could predict both the intensity of pictures' magnification 

Figure 1. Diagrammatic representation of the transfer learning model for ultrasound pictures of 
breast cancer. 
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and their malignancy at the same time. This research combined the breast Histopathology Images dataset [Spanhol, 
F.A., 2021] with other datasets. 
 
2.1 BeiT 
BEiT [Hangbo Bao, 2022] was pre-trained in a self-supervised manner with a masked image modeling target, 
taking inspiration from BERT [Jacob Devlin, 2019]. In a challenge that precisely resembles BERT's masked 
language modeling job, BeiT was trained to predict the visual tokens from the vector quantization codebook of 
DALL-E [Aditya Ramesh, 2021] given masked patches. BeiT demonstrated that pre-trained models using self-
supervised pretraining techniques can outperform supervised pretraining approaches. To determine if enhanced 
pretraining methods correspond to better downstream performance, BeiT with ViT are contrasted. 
 
2.2 ViT 
The first effective use of transformers in computer vision was ViT [Alexey Dosovitskiy, 2021]. ViTs suggested 
using raster-scan ordering to build embeddings utilized as input to the transformer backbone by dividing a picture 
into patches. ViTs use a classifier token, which is utilized to pool intermediate representations and produce a final 
prediction, similar to transformers for text classification. ViT is employed as a competitive baseline model in this 
experiment. 
 
2.3 CaiT  
Late categorization token insertion is suggested by CaiT [Hugo Touvron, 2021]. CaiT does self-attention primarily 
with picture patches for the bulk of its layers and inserts the classification token at the end, in contrast to ViT, 
which adds the classification token right at the start of the network. 
 
By separating representation learning from the classification problem, these last layers simply calculate attentions 
between the classification token and the latent picture representations. Using CaiT, it is tested if its architectural 
upgrades give performance advantages over the traditional ViT architecture. 

 
3. METHODOLOGY 

3.1 Data 
The data [Paul Mooney, 2017] is presented in patches of 50*50 pixels since breast histopathology pictures are 
often vast and frequently comprise many sections of cancer cells. Each image has a binary name, coordinate data 
specifying the position of each pixel, and a specific patient ID. There are 279 patient IDs and 277,524 pictures 
altogether. The remaining 5% of the data are utilized for validation, leaving 95% for training. The picture is 
enlarged to 225*225 pixels as part of typical preprocessing, and it is then normalized using the mean and standard 
deviation data from ImageNet. 
 
3.2 Experimental Setup 
This section describes the experimental setup and how the suggested method's evaluation metrics should be 
interpreted. 
 
3.2.1 Training 
It is well known that large transformers may readily overfit to downstream demands. Early halting and data 
augmentation were used via horizontal and vertical flipping to avoid overfitting. The final adapter classifier and 
the vision transformer backbone both received distinct learning rates. 
 
The classifier is randomly initialized, while the transformer backbone is started with pre-trained weights, which 
serve as the basis for this choice. In a similar vein, it experiments with total backbone freezing, where the weight 
changes are only applied to the adapter layer, and the vision transformer as a whole is completely frozen. 
 
The ratio of negative to positive samples is around three to one. Dataset imbalance is anticipated since IDC cells 
typically only make up a tiny portion of a whole mount sample. The model would produce false negatives on this 
dataset if it were naively trained. A weight-adjusted binary cross entropy loss function is employed to reduce this 
imbalance, which penalizes misclassifying a positive ground truth sample more severely than a negative one 
according to the imbalance of the dataset. 
 
3.2.2 Implementation 
Using Python 3.11.4 (and TensorFlow 2.1.0) installed on a typical PC and with a batch size of 96 for complete 
fine-tuning and 1024 for backbone-frozen setups, models were trained on an Nvidia GeForce RTX 3070 graphics 
processing units (GPU) capability. Additionally, this computer contains an overclocked 4.0 GHz Intel Core i7-
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11800H CPU with 16 logical threads and 24 MB of cache memory, along with 32.0 GB of RAM. With a learning 
rate of 1*10^-5 for the final classifier and 1*10^-10 for the backbone in the non-frozen scenario, the AdamW 
optimizer is employed [Ilya Loshchilov, 2019]. 
 
3.2.3 Assessment Metrics 
The components of the confusion matrix, also known as the error matrix or contingency table, are crucial to the 
overall performance of our suggested model. Four terms—True Positive (TP), False Positive (FP), False Negative 
(FN), and True Negative (TN)—are included in this assessment matrix. In our example, the TP stands for photos 
properly identified as carcinoma, whereas the FP stands for images incorrectly identified as non-carcinoma. While 
the FN stands for carcinoma class pictures that were incorrectly labeled as non-carcinoma, and the TN for properly 
identified non-carcinoma images. Using the Python sci-kit-learn module, four performance metrics based on the 
confusion matrix—precision, sensitivity (recall), overall accuracy, and F1-score—were used to assess the 
classification performance of our proposed model on the testing set. These performance metrics may be computed 
using the formulas below: 
 

1. Sensitivity, often known as "recall," calculates a model's degree of completeness. It shows the proportion 
of photos correctly identified as carcinoma compared to all images. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝐹𝑁 + 𝑇𝑃) 
2. A model is often optimized towards either accuracy or recall using the F1-score, which indicates the 

harmonic average of precision and recall. 
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = (2 ∗ 𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) 

3. Accuracy measures a model’s performance and is calculated as the availability of correctly categorized 
phomages. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝐹𝑁)/(𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃) 
4. Precision measures a model's accuracy and is expressed as the proportion of cancer photos correctly 

identified from all anticipated images of the same class. 
𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

4 Results and Tests 
Precision (F1 score) and Matthew's Correlation Coefficient (MCC) were the four metrics that are used to evaluate 
the model's performance. To take advantage of data augmentation during training, test-time augmentation (TTA) 
is used, a widely utilized approach. Augmentation is used to produce several data points from a single picture 
rather than feeding the model a single image. In this instance, vertical and horizontal flips are used to produce four 
pictures per sample. Then, in order to provide a single output, the four projections are averaged. Given post-
sigmoid activations between 0 and 1, a cutoff limit of 0.5 is chosen. In Table 1, results are shown. 
 
Table 1. Results of the ViT-full model in comparison with other models. 

 
 
ViT, with all of the adjustments made, performed best overall, closely followed by BeiT and CaiT. Thus, the 
performance of a pre-trained model does not always correspond to the downstream environment. Additionally, 
CaiT's poor performance is blamed—despite architectural advancements—on its fewer trainable parameters than 
ViT or BeiT-base. Additionally, It is found that models with frozen and non-frozen backbones perform somewhat 
differently. Given that backbone freezing significantly restricts model capacity and fine-tuning enables the model 
to tune its weights to the downstream task with more degrees of freedom, this outcome is predicted. 
 
The model only uses 50*50 photo patches; thus, a full-mount sample can be created by sewing the patches together. 

 
It can be got a heat map of predictions by performing model inference over the full dataset. Figure 2 illustrates 
how the model properly identifies the malignant area but incorrectly labels the tumorous ring's inside as negative. 
By looking at these failed situations, One may get more information on misclassification in greater depth. In Figure 

Model Trainable 
Params 

Recall F1 Precision MCC 

ViT-full 86M 0.847 0.789 0.736 0.722 
ViT-freeze 785 0.843 0.785 0.735 0.717 
BeiT-full 86M 0.857 0.785 0.726 0.719 
BeiT-freeze 785 0.846 0.783 0.729 0.715 
CaiT-full 47M 0.786 0.750 0.717 0.671 
CaiT-freeze 387 0.787 0.747 0.711 0.667 
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3, the model properly detects the sample's far left corner as negative but incorrectly classifies an odd tissue form 
in the bottom right as negative. These failure nodes may be utilized as signals to direct future data gathering 
throughout the machine learning pipeline's lifespan.  
 

 

(a) Ground truth 

 

(b) Prediction heat map 

 

(c) Overlaid 
 
Figure 2. Prediction using the BeiT-freeze whole mount sample. The model recognizes the center of the cancerous 
area with accuracy, however around its inner ring there are some false negatives.  

 
 

(a) Ground truth 

 

(b) Prediction model 
Figure 3. ViT-freeze's per-patch anticipate on a mixed area. The model properly labels the bottom right as also 
being negative but only with a limited degree of confidence. 

 
4.1 Aggregate Attention Map 

Utilizing vision transformers has the advantage of offering a direct method of studying model behavior via self-
attention matrices. The attention score mix of the i-th layer is written as  
𝐶𝑎𝑝𝐶𝑎𝑝𝐴! ∈ 𝑅"∗" given a sequence length of L. Matrix multiplication is cumulatively applied on the attention 
score matrices to acquire the overall model attention across all levels. Let 𝐴A  e whole attention matrix. Then, this 
matrix may be represented geometrically as  𝐴A = 𝛱!$%& 𝑛𝑜C𝐴A + 𝛱"D, where II stands for an identity matrix and N 
for the quantity of transformer encoder layers. The aggregate impact of any attention score matrix may be 
intuitively comprehended by looking at its product if it reflects a change. The outcome is normalized to retain the 
attention matrix condition that each row adds to 1 in order to account for any remaining connections between the 
layers. 
 
The top row of the aggregate attention matrix is indexed, which comprises attention scores between the 
classification token and every other picture patch, as this study aims to better understand how the model generates 
a prediction. The row is scaled and restructured to match the original image's proportions to create an attention 
map. 
 
The attention map in Figure 4 demonstrates which area of the picture the model focused on in relation to the 
categorization token. The area of the picture with the cell tissues receives the majority of the model's attention, as 
predicted, whereas vacant space is avoided. Nonetheless, practically, the attention map often lacks the depth and 
granularity needed to provide a better understanding of which texture or patterns were primarily responsible for 
the output. Aggregate attention maps, however, may act as a fast and easy sanity check for ViT models. 
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(a) Ground truth 

 

(b) Aggregate attention (c) Overlaid 
 
Figure 4. Map of collective attention taken from ViT-freeze. While appropriately focusing on the important area 
of the picture, the model overlooks the majority of the vacant space. 

 
4.2 Last Attention Map 
A straight application of aggregate attention maps to CaiT is not possible due to late classifier insertion. Therefore, 
alternate applications for CaiT's attention output was investigated. First, the output of the final layer from CaiT is 
extracted, drawing inspiration from DINO [Mathilde Caron, 2021], which creates attention map visualizations 
using the output of the last layer's output on attention. In the unrolled series of picture patches, this attention 
output—which comprises attention scores between the classification token and each other token—is a vector, not 
a matrix. The attention vector is resized and interpolated in the manner of DINO; then it is overlaid on top of the 
input picture. A threshold value of = 0.6 is defined to clip very low attention scores. 
 
Applying DINO's attention visualization technique to CaiT results in interpretable attention maps, as shown in 
Figure 5. The bottom right corner of the picture, which has erratic patterns indicative of IDC, seems to get the  
most out of the model's focus. Compared to the aggregate attention approach, which created essentially 
homogenous maps with little variation over the attended area, the outcome is different. It is proposed that late  
token categorization for disentangled representation learning facilitates the retrieval of attention mappings from 
the network's final layer. 
 
4.3 Latent Representations 

 
 
 
 
 
 
 
 
 
 
 

 
The pooled latent representations of the model serves as the final classifier layer's inputs, to investigate various 
theories for explaining model behavior. The latent may be expressed specifically as the 𝐻 ∈ 𝑅'!, where 𝑑( stands 
for the model's hidden size. t-SNE is used [Laurens van der Maaten, 2008] to decrease 𝑑( 's dimensionality to R^2 
since it often has a big value, such as 768. Figure 6 displays the outcomes.  

 

(a) Head mean (b) Head 1 (c) Head 2 

Figure 5. Using the ground truth picture from Figure 4a, the last attention map was recovered from CaiT-freeze. 
It can be seen 2 of the 6 self-attention heads. 
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Positive data points are largely grouped on the upper right, with a smaller cluster on the bottom, as seen by the 
colors assigned to each point in two-dimensional space using ground truth labels. Additionally, there are some 
beneficial aspects that do not fit into any one group. A similar image is produced when the model's anticipated 
labels are used. Nevertheless, it can be seen that the model makes unreliable predictions close to cluster borders. 
A rise in false positives that are not part of any cluster also seems to be occurring. It can be more easily observed 
that the model is less sure at cluster borders and more definite about negative predictions on the bottom left with 
the brightest yellow hue when coloring the points in accordance with the output of the final sigmoid activation 
function. In addition to offering greater insight into model behavior than scalar measurements, these visualizations 
may be utilized to choose a decision threshold that is more appropriate for the choice between positive and negative 
samples. [Lindroos, J., 1970] 

 
5. CONCLUSION 

This study uses transfer learning to vision transformers to identify breast cancer. By using model attention outputs 
and latent representations, it is concentrated on the interpretability of the model. The aggregate attention map 
approach, which may be used with typical ViT variations, aims to explain the model's overall attention throughout 
the network's layers. The last attention map visualization is used, inspired by DINO for CaiT, which suggests late 
classification token insertion to decouple representation learning from the classification challenge. When used in 
conjunction with a dimensionality reduction method, latent representations may be a valuable tool for examining 
model behavior. These findings point to the potential interpretable use of vision transformer models to support 
IDC diagnosis. 
 

6. FUTURE WORK 
In digital pathology, WSI is often used to forecast gene mutations, molecular subtypes, and clinical consequences. 
As a result, they are often separated into patches for training neural networks and prediction models. However, it 
was not possible to categorize each patch since patch-level tags are often absent properly. Numerous studies have 
used gene expression patterns to comprehend the molecular properties of breast cancer throughout the last several 
decades, thanks to the quick development of high-throughput technology for microarrays and gene expression 
analysis. A preliminary investigation was carried out by Van de Vijver, 2009, to successfully estimate the prognosis 
of breast cancer using the gene expression profile. Data from gene expression profiles were grouped and associated 
with prognostic values. The accuracy of prognostic and diagnostic prediction models may be increased by the 
combination of gene expression profile data with clinical data [Khademi, M., 2015]. Each patient's microarray 
data comprises roughly 25,000 genes and is high-dimensional. The accuracy of prognosis prediction for breast 
cancer may be improved by possible correlations between several genes [Lee, E.S., 2008]. There are several breast 
cancer-related genes known. Oncogene and tumor suppressor gene mutation and aberrant amplification are major 
contributors to the formation and growth of malignancies. For instance, the human epidermal growth factor 
receptor 2, commonly known as c-erbB-2, and two well-known breast cancer risk genes, BRCA1 and BRCA2, are 
major breast cancer carcinogens. 
 
The probability graph model (PGM) [Khademi, M., 2015], developed by Khademi et al., integrates two 
independent microarray models with clinical data to predict and diagnose breast cancer. Prior to building a depth 

(a) Ground truth (b) Predictions at 0.5 cutoff (c) Post-sigmoid activations 

Figure 6. Ground truth, predictions, and logits from Beit-Freeze are used to create t-SNE visualizations. Near 
cluster borders, predictions become inaccurate. 
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confidence network to extract the feature representation of the data, they used principal component analysis (PCA) 
to minimize the dimensionality of the microarray data. They also used structural learning algorithms on clinical 
data at the same time. However, there is currently a lot of work to directly provide slide-level prediction through 
deep learning, and digital whole image (WSI) may provide a computationally effective and efficient method to 
quantitatively characterize the heterogeneity of cancer specimen cell level, motivated by the successful application 
of deep learning methods in the cv field and the enormous contribution of multidimensional data to cancer 
prognosis prediction. WSIs are often used by pathologists to determine nuclear characteristics, determine the stage 
of cancer, and assess the histopathological grading of cancer tissues. According to preliminary research, the use of 
deep learning techniques can automatically identify different cancer subtypes [Stone, P.C., 2007], predict lung and 
liver cancer mutations [Martin, L.R., 2005], classify mesotheliomas [Khademi, M., 2015], find DNA methylation 
patterns [Sun, Y., 2007], determine the human epidermal growth factor receptor status in breast cancer [Gevaert, 
O., 2006], and forecast the overall prognosis of patients for cancer. However, pan-cancer research cannot fully 
describe breast cancer histology, mutation, and pathway activity level [Nguyen, C., 2013]. By employing 
biomarkers that are now invisible to doctors, DL based on CNN may currently predict the gene mutation status in 
H&E-stained WSIs and has the potential to enhance cancer prediction and therapy. Gene mutation prediction may 
be used as a prescreening to increase the cost-effectiveness before next-generation sequencing, enhancing 
precision medical treatment's performance, even if artificial intelligence cannot totally replace humans in practice. 
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